论文标题
通过反复的自我调理来定位非火山区域
Inharmonious Region Localization via Recurrent Self-Reasoning
论文作者
论文摘要
图像编辑操作创建的合成图像很普遍,但是操纵区域和背景之间的颜色或照明不一致可能使其不现实。因此,将非火山区域定位以提高合成形象的质量既重要却又具有挑战性。受经典聚类算法的启发,我们的目标是将像素分组为两个群集:通过将新颖的经常性自我调查(RSR)模块插入UNET结构的瓶颈中,通过插入新颖的复发自我结构(RSR)模块来将其分组为:不harmonious的群集和背景群集。 RSR模块的掩模输出作为注意力指导提供了解码器。最后,我们将来自RSR和解码器的口罩自适应地结合在一起,形成我们的最终面具。图像协调数据集的实验结果表明,我们的方法在定量和定性上都能达到竞争性能。
Synthetic images created by image editing operations are prevalent, but the color or illumination inconsistency between the manipulated region and background may make it unrealistic. Thus, it is important yet challenging to localize the inharmonious region to improve the quality of synthetic image. Inspired by the classic clustering algorithm, we aim to group pixels into two clusters: inharmonious cluster and background cluster by inserting a novel Recurrent Self-Reasoning (RSR) module into the bottleneck of UNet structure. The mask output from RSR module is provided for the decoder as attention guidance. Finally, we adaptively combine the masks from RSR and the decoder to form our final mask. Experimental results on the image harmonization dataset demonstrate that our method achieves competitive performance both quantitatively and qualitatively.