论文标题

$λ_c^+\ to {} pk_s^0k_s^0 $和$λ_C^+\ to {} pk_s^0η$的分支分数的测量

Measurement of branching fractions of $Λ_c^+\to{}pK_S^0K_S^0$ and $Λ_c^+\to{}pK_S^0η$ at Belle

论文作者

Belle Collaboration, Li, L. K., Kinoshita, K., Adachi, I., Ahn, J. K., Aihara, H., Said, S. Al, Asner, D. M., Aushev, T., Ayad, R., Babu, V., Bahinipati, S., Banerjee, Sw., Behera, P., Belous, K., Bennett, J., Bessner, M., Bhuyan, B., Bilka, T., Biswas, D., Bobrov, A., Bodrov, D., Bonvicini, G., Borah, J., Bozek, A., Bračko, M., Branchini, P., Browder, T. E., Budano, A., Campajola, M., Červenkov, D., Chang, M. -C., Chen, A., Cheon, B. G., Chilikin, K., Cho, K., Cho, S. -J., Choi, Y., Choudhury, S., Cinabro, D., Das, S., De Nardo, G., De Pietro, G., Dhamija, R., Di Capua, F., Dingfelder, J., Doležal, Z., Dong, T. V., Epifanov, D., Ferber, T., Ferlewicz, D., Fulsom, B. G., Garg, R., Gaur, V., Garmash, A., Giri, A., Goldenzweig, P., Golob, B., Gong, G., Graziani, E., Guan, Y., Gudkova, K., Hadjivasiliou, C., Halder, S., Han, X., Hayasaka, K., Hayashii, H., Hedges, M. T., Hou, W. -S., Hsu, C. -L., Inami, K., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jacobs, W. W., Jang, E. -J., Ji, Q. P., Jia, S., Jin, Y., Joo, K. K., Kang, K. H., Kawasaki, T., Kim, C. H., Kim, D. Y., Kim, K. -H., Kim, Y. -K., Kodyš, P., Korobov, A., Korpar, S., Kovalenko, E., Križan, P., Krokovny, P., Kuhr, T., Kumar, M., Kumar, R., Kumara, K., Kwon, Y. -J., Lam, T., Lange, J. S., Lee, S. C., Li, C. H., Li, S. X., Li, Y., Li, Y. B., Gioi, L. Li, Libby, J., Lieret, K., Lin, Y. -R., Liventsev, D., Luo, T., Masuda, M., Matsuda, T., Matvienko, D., Maurya, S. K., Meier, F., Merola, M., Metzner, F., Miyabayashi, K., Mizuk, R., Mussa, R., Nakamura, I., Nakano, T., Nakao, M., Natkaniec, Z., Natochii, A., Nayak, L., Nayak, M., Nisar, N. K., Nishida, S., Ogawa, S., Ono, H., Pakhlov, P., Pakhlova, G., Pardi, S., Park, H., Park, J., Passeri, A., Patra, S., Paul, S., Pestotnik, R., Piilonen, L. E., Podobnik, T., Prencipe, E., Prim, M. T., Rostomyan, A., Rout, N., Russo, G., Sakai, Y., Sandilya, S., Savinov, V., Schnell, G., Schueler, J., Schwanda, C., Schwartz, A. J., Seino, Y., Senyo, K., Sevior, M. E., Shan, W., Shapkin, M., Sharma, C., Shen, C. P., Shiu, J. -G., Simon, F., Singh, J. B., Solovieva, E., Starič, M., Strube, J. F., Sumihama, M., Sumiyoshi, T., Takizawa, M., Tamponi, U., Tang, S. S., Tanida, K., Tenchini, F., Uchida, M., Uglov, T., Unno, Y., Uno, K., Uno, S., Urquijo, P., Vahsen, S. E., van Tonder, R., Varner, G., Varvell, K. E., Vinokurova, A., Vossen, A., Wang, D., Wang, M. -Z., Wang, X. L., Watanabe, M., Watanuki, S., Werbycka, O., Wiechczynski, J., Won, E., Xu, X., Yabsley, B. D., Yan, W., Yang, S. B., Yelton, J., Yin, J. H., Yuan, C. Z., Yuan, L., Yusa, Y., Zhang, Z. P., Zhilich, V., Zhukova, V.

论文摘要

我们介绍了一项单一的cabibbo抑制衰减$λ_c^+\ to {} pk_s^0k_s^0 $和Cabibbo最喜欢的衰减$λ_c^+\ to {} pk_s^0η$,基于980 $ \ rm fb^pelter-pelter-pelt the-rm fb^{ - 1} $ e^+e^ - $ collider。我们测量其分支相对于$λ_c^+\ to {} pk_s^0 $:$ \ Mathcal {b}(λ_c^+\ to {} pk_s^0k_s^0)/\ Mathcal {b} 0.04)\ times 10^{ - 2}} $和$ \ Mathcal {b}(λ_c^+\ to {} pk_s^0η)/\ Mathcal {b}(λ_c^+\ to {} pk_s^0) 10^{ - 1}} $。结合世界平均$ \ MATHCAL {B}(λ_c^+\ to {} pk_s^0)$,我们具有绝对的分支分数:$ \ nathcal {b}(λ_c^+\ \ \ to {} pk_s^0k_s^0k_s^0k_s^0) 10^{ - 4}} $和$ \ MATHCAL {B}(λ_c^+\ to {} pk_s^0η)= {(4.35 \ pm 0.10 \ pm 0.20 \ pm 0.22 \ pm 0.22)\ times 10^{ - 3}}} $。第一个和第二个不确定性分别是统计和系统的,而第三个不确定性源于$ \ Mathcal {b}(λ_c^+\ to {} pk_s^0)$的不确定性。第一次观察到模式$λ_C^+\ to {} pk_s^0k_s^0 $,并且具有$> \!10σ$的统计意义。 $λ_C^+\ to {} pk_s^0η$的分支分数已经测量,精度比以前的结果提高了三倍,并且发现与世界平均水平一致。

We present a study of a singly Cabibbo-suppressed decay $Λ_c^+\to{}pK_S^0K_S^0$ and a Cabibbo-favored decay $Λ_c^+\to{}pK_S^0η$ based on 980 $\rm fb^{-1}$ of data collected by the Belle detector, operating at the KEKB energy-asymmetric $e^+e^-$ collider. We measure their branching fractions relative to $Λ_c^+\to{}pK_S^0$: $\mathcal{B}(Λ_c^+\to{}pK_S^0K_S^0)/\mathcal{B}(Λ_c^+\to{}pK_S^0)={(1.48 \pm 0.08 \pm 0.04)\times 10^{-2}}$ and $\mathcal{B}(Λ_c^+\to{}pK_S^0η)/\mathcal{B}(Λ_c^+\to{}pK_S^0)={(2.73\pm 0.06\pm 0.13)\times 10^{-1}}$. Combining with the world average $\mathcal{B}(Λ_c^+\to{}pK_S^0)$, we have the absolute branching fractions: $\mathcal{B}(Λ_c^+\to{}pK_S^0K_S^0) = {(2.35\pm 0.12\pm 0.07 \pm 0.12 )\times 10^{-4}}$ and $\mathcal{B}(Λ_c^+\to{}pK_S^0η) = {(4.35\pm 0.10\pm 0.20 \pm 0.22 )\times 10^{-3}}$. The first and second uncertainties are statistical and systematic, respectively, while the third ones arise from the uncertainty on $\mathcal{B}(Λ_c^+\to{}pK_S^0)$. The mode $Λ_c^+\to{}pK_S^0K_S^0$ is observed for the first time and has a statistical significance of $>\!10σ$. The branching fraction of $Λ_c^+\to{}pK_S^0η$ has been measured with a threefold improvement in precision over previous results and is found to be consistent with the world average.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源