论文标题

在概念转移下进行适应性优化的自适应加权数据增强一致性正规化

Adaptively Weighted Data Augmentation Consistency Regularization for Robust Optimization under Concept Shift

论文作者

Dong, Yijun, Xie, Yuege, Ward, Rachel

论文摘要

概念转移是自然任务中的一个流行问题,例如医学图像分割,其中样本通常来自不同的亚种群,在功能和标签之间具有变异的相关性。医学图像分割中一种常见的概念转移类型是标签 - sparse样品(如果有的话)分割标签和标签密集的样品具有丰富标记像素的标签样本之间的“信息失衡”。现有的分布在强大的算法上重点是自适应截断/下降,以“在我们的上下文中的标签 - sparse)样本进行“少信息”(即标签 - sparse)样本。为了更有效地利用标签-sparse样品的数据特征,我们提出了一种自适应加权的在线优化算法 - adawac-,以将数据增强一致性合并在样本重量重量中。我们的方法引入了一组可训练的权重,以平衡每个样本的监督损失和无监督的一致性正规化。在基本目标的马鞍点,权重将标签密度样本分配给监督损失,并标记标签样品为无监督的一致性正则化。我们通过将优化作为鞍点问题上的在线镜像下降来提供融合保证。我们的经验结果表明,Adawac不仅提高了分割性能和样本效率,而且还提高了使用不同的UNET式骨架的各种医疗图像分割任务的概念转移的稳健性。

Concept shift is a prevailing problem in natural tasks like medical image segmentation where samples usually come from different subpopulations with variant correlations between features and labels. One common type of concept shift in medical image segmentation is the "information imbalance" between label-sparse samples with few (if any) segmentation labels and label-dense samples with plentiful labeled pixels. Existing distributionally robust algorithms have focused on adaptively truncating/down-weighting the "less informative" (i.e., label-sparse in our context) samples. To exploit data features of label-sparse samples more efficiently, we propose an adaptively weighted online optimization algorithm -- AdaWAC -- to incorporate data augmentation consistency regularization in sample reweighting. Our method introduces a set of trainable weights to balance the supervised loss and unsupervised consistency regularization of each sample separately. At the saddle point of the underlying objective, the weights assign label-dense samples to the supervised loss and label-sparse samples to the unsupervised consistency regularization. We provide a convergence guarantee by recasting the optimization as online mirror descent on a saddle point problem. Our empirical results demonstrate that AdaWAC not only enhances the segmentation performance and sample efficiency but also improves the robustness to concept shift on various medical image segmentation tasks with different UNet-style backbones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源