论文标题
将化学反应机制隔离为具有反应性粗粒分子动力学的变量:阶梯生长与链生长聚合的变量
Isolating Chemical Reaction Mechanism as a Variable with Reactive Coarse-Grained Molecular Dynamics: Step-Growth versus Chain-Growth Polymerization
论文作者
论文摘要
我们提出了一种将化学反应机制隔离为在化学不同系统中可独立控制的变量的一般方法。减少分子动力学模拟计算费用的现代方法通常将多个原子分为单个“粗粒”相互作用位点,从而导致化学分辨率损失。在这项工作中,我们将此缺点转换为特征,并使用相同的粗粒模型来表示具有非反应性特征但通过不同机制反应的分子。作为概念的证明,我们使用这种方法来模拟和研究通过链或阶梯增长聚合聚合的独特但相似的三功能的异氰酸酯树脂制剂。由于这些模型的基本分子力学是相同的,因此所有新兴差异仅是反应机制的函数。我们发现,微观形态类似于相关的全原子模拟,并且模拟的机械测试合理地与实验一致。
We present a general approach to isolate chemical reaction mechanism as an independently controllable variable across chemically distinct systems. Modern approaches to reduce the computational expense of molecular dynamics simulations often group multiple atoms into a single "coarse-grained" interaction site, which leads to a loss of chemical resolution. In this work we convert this shortcoming into a feature and use identical coarse-grained models to represent molecules that share non-reactive characteristics but react by different mechanisms. As a proof of concept we use this approach to simulate and investigate distinct, yet similar, trifunctional isocyanurate resin formulations that polymerize by either chain- or step-growth. Since the underlying molecular mechanics of these models are identical, all emergent differences are a function of the reaction mechanism only. We find that the microscopic morphologies resemble related all-atom simulations and that simulated mechanical testing reasonably agrees with experiment.