论文标题

Medfair:基准进行医学成像的公平性

MEDFAIR: Benchmarking Fairness for Medical Imaging

论文作者

Zong, Yongshuo, Yang, Yongxin, Hospedales, Timothy

论文摘要

许多工作表明,基于机器的医学诊断系统可能会偏向某些人群。这激发了越来越多的偏见缓解算法,旨在解决机器学习中的公平问题。但是,由于两个原因,很难比较它们在医学成像中的有效性。首先,就评估公平性的标准几乎没有共识。其次,现有的缓解算法是在不同的设置下开发的,例如数据集,模型选择策略,骨架和公平度量指标,从而根据现有结果进行了直接比较和评估。在这项工作中,我们介绍了Medfair,这是一个框架,以基于医学成像的机器学习模型的公平性。 Medfair涵盖了来自各个类别的11个算法,来自不同成像方式的9个数据集以及三个模型选择标准。通过广泛的实验,我们发现模型选择标准的研究不足可能会对公平结果产生重大影响。相比之下,在分布和分布的环境中,最新的偏置缓解算法并不能显着改善经验风险最小化(ERM)(ERM)的公平结果。我们从各种角度评估公平性,并针对需要不同道德原则的不同医疗应用程序方案提出建议。我们的框架为深度学习中未来缓解算法的开发和评估提供了可再现且易于使用的入口点。代码可在https://github.com/ys-zong/medfair上找到。

A multitude of work has shown that machine learning-based medical diagnosis systems can be biased against certain subgroups of people. This has motivated a growing number of bias mitigation algorithms that aim to address fairness issues in machine learning. However, it is difficult to compare their effectiveness in medical imaging for two reasons. First, there is little consensus on the criteria to assess fairness. Second, existing bias mitigation algorithms are developed under different settings, e.g., datasets, model selection strategies, backbones, and fairness metrics, making a direct comparison and evaluation based on existing results impossible. In this work, we introduce MEDFAIR, a framework to benchmark the fairness of machine learning models for medical imaging. MEDFAIR covers eleven algorithms from various categories, nine datasets from different imaging modalities, and three model selection criteria. Through extensive experiments, we find that the under-studied issue of model selection criterion can have a significant impact on fairness outcomes; while in contrast, state-of-the-art bias mitigation algorithms do not significantly improve fairness outcomes over empirical risk minimization (ERM) in both in-distribution and out-of-distribution settings. We evaluate fairness from various perspectives and make recommendations for different medical application scenarios that require different ethical principles. Our framework provides a reproducible and easy-to-use entry point for the development and evaluation of future bias mitigation algorithms in deep learning. Code is available at https://github.com/ys-zong/MEDFAIR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源