论文标题

在几乎平行的$ \ mathrm {g} _2 $ -Manifolds上杀死旋转器的无限变形

Infinitesimal deformations of Killing spinors on nearly parallel $\mathrm{G}_2$-manifolds

论文作者

Ohno, Soma

论文摘要

承认杀人纺纱器的歧管是爱因斯坦歧管。因此,杀死旋转器的变形需要爱因斯坦指标的变形。在本文中,我们研究了在几乎平行的$ \ mathrm {g} _2 $ -Manifolds上杀死旋转器的无限变形。由于几乎平行的$ \ mathrm {g} _2 $ - 结构与7维旋转歧管上的杀死纺纱器之间存在一对一的对应关系,因此我们的结果表明,在杀死纺纱器的情况下检查了几乎并行$ \ mathrm {g} _2 $结构的无限变形。采用相同的技术,我们确定Rarita-Schinginger田地的空间与Laplacian的特征空间的子空间一致。

Manifolds admitting Killing spinors are Einstein manifolds. Thus, a deformation of a Killing spinor entails a deformation of Einstein metrics. In this paper, we study infinitesimal deformations of Killing spinors on nearly parallel $\mathrm{G}_2$-manifolds. Since there is a one-to-one correspondence between nearly parallel $\mathrm{G}_2$-structures and Killing spinors on 7-dimensional spin manifolds, our results imply that infinitesimal deformations of nearly parallel $\mathrm{G}_2$-structures are examined in terms of Killing spinors. Applying the same technique, we identify that the space of the Rarita-Schwinger fields coincides with a subspace of the eigenspace of the Laplacian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源