论文标题

部分可观测时空混沌系统的无模型预测

Shielding Federated Learning: Mitigating Byzantine Attacks with Less Constraints

论文作者

Li, Minghui, Wan, Wei, Lu, Jianrong, Hu, Shengshan, Shi, Junyu, Zhang, Leo Yu, Zhou, Man, Zheng, Yifeng

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Federated learning is a newly emerging distributed learning framework that facilitates the collaborative training of a shared global model among distributed participants with their privacy preserved. However, federated learning systems are vulnerable to Byzantine attacks from malicious participants, who can upload carefully crafted local model updates to degrade the quality of the global model and even leave a backdoor. While this problem has received significant attention recently, current defensive schemes heavily rely on various assumptions, such as a fixed Byzantine model, availability of participants' local data, minority attackers, IID data distribution, etc. To relax those constraints, this paper presents Robust-FL, the first prediction-based Byzantine-robust federated learning scheme where none of the assumptions is leveraged. The core idea of the Robust-FL is exploiting historical global model to construct an estimator based on which the local models will be filtered through similarity detection. We then cluster local models to adaptively adjust the acceptable differences between the local models and the estimator such that Byzantine users can be identified. Extensive experiments over different datasets show that our approach achieves the following advantages simultaneously: (i) independence of participants' local data, (ii) tolerance of majority attackers, (iii) generalization to variable Byzantine model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源