论文标题
部分可观测时空混沌系统的无模型预测
Inverse Game Theory for Stackelberg Games: the Blessing of Bounded Rationality
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Optimizing strategic decisions (a.k.a. computing equilibrium) is key to the success of many non-cooperative multi-agent applications. However, in many real-world situations, we may face the exact opposite of this game-theoretic problem -- instead of prescribing equilibrium of a given game, we may directly observe the agents' equilibrium behaviors but want to infer the underlying parameters of an unknown game. This research question, also known as inverse game theory, has been studied in multiple recent works in the context of Stackelberg games. Unfortunately, existing works exhibit quite negative results, showing statistical hardness and computational hardness, assuming follower's perfectly rational behaviors. Our work relaxes the perfect rationality agent assumption to the classic quantal response model, a more realistic behavior model of bounded rationality. Interestingly, we show that the smooth property brought by such bounded rationality model actually leads to provably more efficient learning of the follower utility parameters in general Stackelberg games. Systematic empirical experiments on synthesized games confirm our theoretical results and further suggest its robustness beyond the strict quantal response model.