论文标题

Wi-Closure:使用无线传感可靠,有效地搜索机器人间循环封闭

Wi-Closure: Reliable and Efficient Search of Inter-robot Loop Closures Using Wireless Sensing

论文作者

Wang, Weiying, Kemmeren, Anne, Son, Daniel, Alonso-Mora, Javier, Gil, Stephanie

论文摘要

在本文中,我们提出了一种新型算法,即Wi闭合,以提高多机器人大满贯中环闭合检测的计算效率和稳健性。我们的方法通过修剪潜在循环封闭的搜索空间来减少经典方法的计算开销,然后再通过典型的多机器人大满贯管道评估。 Wi-closure通过在机器人之间使用无线通信信号来识别在空间上彼此接近的候选者,即使它们在非线视线中或在环境的偏远区域中进行操作,也可以实现这一目标。我们证明了我们在模拟和硬件实验中的方法的有效性。我们的结果表明,使用Wi-Closure大大降低了计算时间,在模拟中缩短了54%,而在硬件中,使用多机器人大满贯基线。重要的是,这是在不牺牲准确性的情况下实现的。在模拟中,使用WI闭合可将绝对轨迹估计误差降低99%,硬件实验中的89.2%减少了89.2%。这种改进部分是由于Wi-Closure避免灾难性优化失败的能力,通常在具有挑战性的重复环境中使用经典方法发生。

In this paper we propose a novel algorithm, Wi-Closure, to improve computational efficiency and robustness of loop closure detection in multi-robot SLAM. Our approach decreases the computational overhead of classical approaches by pruning the search space of potential loop closures, prior to evaluation by a typical multi-robot SLAM pipeline. Wi-Closure achieves this by identifying candidates that are spatially close to each other by using sensing over the wireless communication signal between robots, even when they are operating in non-line-of-sight or in remote areas of the environment from one another. We demonstrate the validity of our approach in simulation and hardware experiments. Our results show that using Wi-closure greatly reduces computation time, by 54% in simulation and by 77% in hardware compared, with a multi-robot SLAM baseline. Importantly, this is achieved without sacrificing accuracy. Using Wi-Closure reduces absolute trajectory estimation error by 99% in simulation and 89.2% in hardware experiments. This improvement is due in part to Wi-Closure's ability to avoid catastrophic optimization failure that typically occurs with classical approaches in challenging repetitive environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源