论文标题

估计数字自动化的生产率提高

Estimating productivity gains in digital automation

论文作者

Jacobo-Romero, Mauricio, Carvalho, Danilo S., Freitas, André

论文摘要

本文提出了一个新的生产率估计模型,以评估生产链中采用人工智能(AI)组件的效果。我们的模型提供了解决“ AI”索洛悖论的证据。我们提供(i)理论和经验证据来解释索洛的二分法; (ii)一个数据驱动的模型,以估计和评估生产率变化; (iii)一种基于过程挖掘数据集的方法,以确定业务流程,BP和生产力; (iv)一组计算机模拟参数; (v)和关于劳动分布的经验分析。这些提供了有关为什么我们将AI Solow的悖论视为度量不良的结果的数据。

This paper proposes a novel productivity estimation model to evaluate the effects of adopting Artificial Intelligence (AI) components in a production chain. Our model provides evidence to address the "AI's" Solow's Paradox. We provide (i) theoretical and empirical evidence to explain Solow's dichotomy; (ii) a data-driven model to estimate and asses productivity variations; (iii) a methodology underpinned on process mining datasets to determine the business process, BP, and productivity; (iv) a set of computer simulation parameters; (v) and empirical analysis on labour-distribution. These provide data on why we consider AI Solow's paradox a consequence of metric mismeasurement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源