论文标题

CAIRL:高性能增强学习环境工具包

CaiRL: A High-Performance Reinforcement Learning Environment Toolkit

论文作者

Andersen, Per-Arne, Goodwin, Morten, Granmo, Ole-Christoffer

论文摘要

本文解决了一个有效地为运行增强学习(RL)实验提供框架的平台的可怕需求。我们将CAIRL环境工具包作为一种有效,兼容,更可持续的替代方案,用于培训学习代理,并提出了开发更有效的环境模拟的方法。 越来越重视发展可持续人工智能。但是,几乎没有努力提高运行环境模拟的效率。最受欢迎的增强学习工具包Openai Gym是使用Python建造的,这是一种强大但缓慢的编程语言。我们提出了一个用C ++编写的工具包,具有相同的灵活性水平,但工程级的数量级更快,以弥补Python的效率低下。这将大大削减气候排放。 Cairl还提供了第一个强化学习工具包,并具有内置的JVM和Flash支持,用于运行Legacy Flash游戏以进行增强学习研究。我们证明了Cairl在经典控制基准测试中的有效性,将执行速度与Openai Gym进行了比较。此外,我们说明CAIRL可以作为Openai体育馆的替换替代品,以便由于环境计算时间的减少而利用训练速度明显更快。

This paper addresses the dire need for a platform that efficiently provides a framework for running reinforcement learning (RL) experiments. We propose the CaiRL Environment Toolkit as an efficient, compatible, and more sustainable alternative for training learning agents and propose methods to develop more efficient environment simulations. There is an increasing focus on developing sustainable artificial intelligence. However, little effort has been made to improve the efficiency of running environment simulations. The most popular development toolkit for reinforcement learning, OpenAI Gym, is built using Python, a powerful but slow programming language. We propose a toolkit written in C++ with the same flexibility level but works orders of magnitude faster to make up for Python's inefficiency. This would drastically cut climate emissions. CaiRL also presents the first reinforcement learning toolkit with a built-in JVM and Flash support for running legacy flash games for reinforcement learning research. We demonstrate the effectiveness of CaiRL in the classic control benchmark, comparing the execution speed to OpenAI Gym. Furthermore, we illustrate that CaiRL can act as a drop-in replacement for OpenAI Gym to leverage significantly faster training speeds because of the reduced environment computation time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源