论文标题

一个人可以在平均曲率较大的球体上扰动赤道区吗?

Can One Perturb the Equatorial Zone on a Sphere with Larger Mean Curvature?

论文作者

Hu, Baichuan, Ma, Xiang, Wang, Shengyang

论文摘要

我们考虑赤道区域上赤道区域的平均曲率刚度问题,该球体对赤道的对称,宽度为2 $ 2W $。关于刚性有两个不同的概念,即强刚度和局部刚性。我们证明,对于每种这些刚性问题,存在一个临界值,因此,只有当区域宽度小于该值时,刚性才能成立。对于刚性部分,我们使用了切线原理和特定的引理(我们之前建立的陷阱片诱饵)。对于非依据部分,我们通过使用Delaunay表面的称为圆角引理的胶合过程来构建非平凡的扰动。

We consider the mean curvature rigidity problem of an equatorial zone on a sphere which is symmetric about the equator with width $2w$. There are two different notions on rigidity, i.e. strong rigidity and local rigidity. We prove that for each kind of these rigidity problems, there exists a critical value such that the rigidity holds true if, and only if, the zone width is smaller than that value. For the rigidity part, we used the tangency principle and a specific lemma (the trap-slice lemma we established before). For the non-rigidity part, we construct the nontrivial perturbations by a gluing procedure called the round-corner lemma using the Delaunay surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源