论文标题
在布拉德洛极限的两个球体上涡流空间的几何形状
The geometry of the space of vortices on a two-sphere in the Bradlow limit
论文作者
论文摘要
事实证明,在$ n $ vortices上的归一化$ l^2 $公制在两个球员的$ n $ vortices上,并具有任何riemannian指标,在布拉德洛(Bradlow)的限制中均匀地收敛于fubini-study study量表。在严格的环境中,这是对巴蒂斯塔和曼顿的长期非正式猜想。
It is proved that the normalized $L^2$ metric on the moduli space of $n$-vortices on a two-sphere, endowed with any Riemannian metric, converges uniformly in the Bradlow limit to the Fubini-Study metric. This establishes, in a rigorous setting, a longstanding informal conjecture of Baptista and Manton.