论文标题

大地电流的长度比较定理

A length comparison theorem for geodesic currents

论文作者

Sapir, Jenya

论文摘要

我们与封闭的Euler特征的封闭表面$ s $ s $ \ mathcal c(s)$合作。在作者对Sebastian Hensel作者的先前工作,每个填充地球当前$μ$在TeichmüllerSpace中具有独特的长度最小化度量$ x $。在本文中,我们表明,在所谓的$ x $的厚组件上,$μ$和$ x $的几何形状是可比性的,最多可达标量,具体仅取决于$μ$和$ s $的拓扑。我们还仅使用$μ$的长度函数来表征投影的厚组件。

We work with the space $\mathcal C(S)$ of geodesic currents on a closed surface $S$ of negative Euler characteristic. By prior work of the author with Sebastian Hensel, each filling geodesic current $μ$ has a unique length-minimizing metric $X$ in Teichmüller space. In this paper, we show that, on so-called thick components of $X$, the geometries of $μ$ and $X$ are comparable, up to a scalar depending only on $μ$ and the topology of $S$. We also characterize thick components of the projection using only the length function of $μ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源