论文标题

杂种离散的外观演算和球形壳中BousSinesQ对流的有限差异方法

A hybrid discrete exterior calculus and finite difference method for Boussinesq convection in spherical shells

论文作者

Mantravadi, Bhargav, Jagad, Pankaj, Samtaney, Ravi

论文摘要

我们提出了一种新的混合离散外积分(DEC)和有限差(FD)方法,以模拟由内部加热和基础加热的球形壳中完全三维的Boussinesq对流,在行星和恒星现象中相关。我们使用DEC来计算表面球流,利用其独特的结构保存特征(例如,辅助量(如动能)和坐标系统独立性,而我们使用FD方法将径向方向离散。用于这种新颖方法的网格没有任何问题,例如坐标奇异性,极点附近的网格非连接以及重叠区域。我们已经使用PETSC框架开发了一个平行的内部代码,以验证混合DEC-FD公式并证明收敛。我们已经进行了一系列数值测试,其中包括对临界雷利数量的量化球形壳的定量,其特征在于0.2至0.8的纵横比,除了固定的巨型螺旋滚覆盖所有固定的螺旋式外壳外,还以适度的较薄的螺旋壳覆盖了较弱的弱非线性状态和nussers的量化量和re ussers的量化量。该方法的表现出比二阶误差收敛的略好,带有网格尺寸。

We present a new hybrid discrete exterior calculus (DEC) and finite difference (FD) method to simulate fully three-dimensional Boussinesq convection in spherical shells subject to internal heating and basal heating, relevant in the planetary and stellar phenomenon. We employ DEC to compute the surface spherical flows, taking advantage of its unique features of structure preservation (e.g., conservation of secondary quantities like kinetic energy) and coordinate system independence, while we discretize the radial direction using FD method. The grid employed for this novel method is free of problems like the coordinate singularity, grid non-convergence near the poles, and the overlap regions. We have developed a parallel in-house code using the PETSc framework to verify the hybrid DEC-FD formulation and demonstrate convergence. We have performed a series of numerical tests which include quantification of the critical Rayleigh numbers for spherical shells characterized by aspect ratios ranging from 0.2 to 0.8, simulation of robust convective patterns in addition to stationary giant spiral roll covering all the spherical surface in moderately thin shells near the weakly nonlinear regime, and the quantification of Nusselt and Reynolds numbers for basally heated spherical shells. The method exhibits slightly better than second order error convergence with the mesh size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源