论文标题

审查功能数据的聚类方法

Review of Clustering Methods for Functional Data

论文作者

Zhang, Mimi, Parnell, Andrew

论文摘要

功能数据聚类是在离散测量/观测值的连续函数中识别出异质的形态模式。功能数据群集的应用已出现在各个科学领域的许多出版物中,包括但不限于生物学,(BIO)化学,工程,环境科学,医学,医学,心理学,社会科学等。功能数据聚类应用的现象增长表明,迫切需要采用有效的群集方法和量身定型的实施系统。另一方面,有关时间序列的群集分析,轨迹数据,时空数据等的文献都与功能数据有关。因此,现有功能数据聚类方法的总体结构将使各个研究领域的思想交叉授粉。我们在这里对功能数据的原始聚类方法进行了全面审查。我们提出了一种系统的分类法,该分类法探讨了现有功能数据聚类方法之间的连接和差异,并将它们与常规的多元聚类方法联系起来。分类法的结构建立在功能数据聚类方法的三个主要属性上,因此比现有分类更可靠。该评论旨在弥合功能数据分析社区与聚类社区之间的差距,并为功能数据聚类生成新的原则。

Functional data clustering is to identify heterogeneous morphological patterns in the continuous functions underlying the discrete measurements/observations. Application of functional data clustering has appeared in many publications across various fields of sciences, including but not limited to biology, (bio)chemistry, engineering, environmental science, medical science, psychology, social science, etc. The phenomenal growth of the application of functional data clustering indicates the urgent need for a systematic approach to develop efficient clustering methods and scalable algorithmic implementations. On the other hand, there is abundant literature on the cluster analysis of time series, trajectory data, spatio-temporal data, etc., which are all related to functional data. Therefore, an overarching structure of existing functional data clustering methods will enable the cross-pollination of ideas across various research fields. We here conduct a comprehensive review of original clustering methods for functional data. We propose a systematic taxonomy that explores the connections and differences among the existing functional data clustering methods and relates them to the conventional multivariate clustering methods. The structure of the taxonomy is built on three main attributes of a functional data clustering method and therefore is more reliable than existing categorizations. The review aims to bridge the gap between the functional data analysis community and the clustering community and to generate new principles for functional data clustering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源