论文标题

用于安全贝叶斯优化的元学习先验

Meta-Learning Priors for Safe Bayesian Optimization

论文作者

Rothfuss, Jonas, Koenig, Christopher, Rupenyan, Alisa, Krause, Andreas

论文摘要

在机器人技术中,在安全限制下优化控制器参数是一个重要的挑战。安全的贝叶斯优化(BO)量化了目标和约束中的不确定性,以安全地指导这种情况下的探索。但是,手动设计合适的概率模型可能具有挑战性。在存在未知安全限制的情况下,选择可靠的模型超参数以避免违反安全性是至关重要的。在这里,我们通过向离线数据的安全BO进行元学习先验提出了一种数据驱动的方法。我们基于一种元学习算法F-PACOH,能够在数据稀缺的设置中提供可靠的不确定性量化。作为核心贡献,我们开发了一个新颖的框架,可以通过经验不确定性指标和边境搜索算法以数据驱动的方式选择符合安全性的先验。在基准功能和高精度运动系统上,我们证明了我们的元学习先验在维持安全性的同时加快了安全bo方法的收敛性。

In robotics, optimizing controller parameters under safety constraints is an important challenge. Safe Bayesian optimization (BO) quantifies uncertainty in the objective and constraints to safely guide exploration in such settings. Hand-designing a suitable probabilistic model can be challenging, however. In the presence of unknown safety constraints, it is crucial to choose reliable model hyper-parameters to avoid safety violations. Here, we propose a data-driven approach to this problem by meta-learning priors for safe BO from offline data. We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity. As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner via empirical uncertainty metrics and a frontier search algorithm. On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches while maintaining safety.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源