论文标题

混合移动平均过程的随机优化,用于控制非马克维亚水流环境

Stochastic optimization of a mixed moving average process for controlling non-Markovian streamflow environments

论文作者

Yoshioka, Hidekazu, Tanaka, Tomohiro, Yoshioka, Yumi, Hashiguchi, Ayumi

论文摘要

我们研究了一个量子值仿射过程的差异及其在流量管理中的应用的质量构成的静态厄贡控制问题。受控系统是一种跳跃驱动的混合运动平均过程,它会生成实际的次指定自相关功能,并且控件的静态性质源自系统中现实的可观察性假设。马尔可夫升降机有效地将系统离散为有限维过程,这更容易分析。该问题的分辨率基于向后的Kolmogorov方程和二次解决方案ANSATZ。控制问题具有封闭形式的解决方案,并且该方差具有严格的上限和下限,表明即使受到高控制成本的约束,方差也无法采用任意值。讨论了基于马尔可夫升降机的离散系统与原始无限维度之间的对应关系。然后,提出了收敛的马尔可夫升力,以近似无限二维系统。最后,使用可用的数据将控制问题应用于真实情况。还对维持流量变异性的额外限制的扩展问题进行了分析,而没有显着降低所提出框架的障碍性。

We investigated a cost-constrained static ergodic control problem of the variance of measure-valued affine processes and its application in streamflow management. The controlled system is a jump-driven mixed moving average process that generates realistic subexponential autocorrelation functions, and the static nature of the control originates from a realistic observability assumption in the system. The Markovian lift was effectively used to discretize the system into a finite-dimensional process, which is easier to analyze. The resolution of the problem is based on backward Kolmogorov equations and a quadratic solution ansatz. The control problem has a closed-form solution, and the variance has both strict upper and lower bounds, indicating that the variance cannot take an arbitrary value even when it is subject to a high control cost. The correspondence between the discretized system based on the Markovian lift and the original infinite-dimensional one is discussed. Then, a convergent Markovian lift is presented to approximate the infinite-dimensional system. Finally, the control problem was applied to real cases using available data for a river reach. An extended problem subject to an additional constraint on maintaining the flow variability was also analyzed without significantly degrading the tractability of the proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源