论文标题
两种新类别的指数runge-kutta集成符,用于有效解决僵硬的系统或高度振荡问题
Two new classes of exponential Runge-Kutta integrators for efficiently solving stiff systems or highly oscillatory problems
论文作者
论文摘要
我们注意到,具有高度振荡溶液的刚性系统或微分方程无法使用常规方法有效地解决。在本文中,我们研究了两种新的指数runge-kutta(ERK)集成剂,以有效地解决僵硬的系统或高度振荡的问题。我们首先根据顺序条件提出了一种新颖的一类明确修改版本的指数runge-kutta(mverk)方法。此外,我们考虑了指数runge-kutta(Sverk)方法的一类简化版本。数值结果表明,与众所周知的僵硬系统或文献中高度振荡性问题相比,本文中明确的Mverk积分器和SVERK方法的高效率。
We note a fact that stiff systems or differential equations that have highly oscillatory solutions cannot be solved efficiently using conventional methods. In this paper, we study two new classes of exponential Runge-Kutta (ERK) integrators for efficiently solving stiff systems or highly oscillatory problems. We first present a novel class of explicit modified version of exponential Runge-Kutta (MVERK) methods based on the order conditions. Furthermore, we consider a class of explicit simplified version of exponential Runge-Kutta (SVERK) methods. Numerical results demonstrate the high efficiency of the explicit MVERK integrators and SVERK methods derived in this paper compared with the well-known explicit ERK integrators for stiff systems or highly oscillatory problems in the literature.