论文标题

代数函数的周期性点与Ramanujan的持续部分有关

Periodic points of algebraic functions related to a continued fraction of Ramanujan

论文作者

Akkarapakam, Sushmanth J., Morton, Patrick

论文摘要

Ramanujan的持续分数$ v(τ)$在字段中的某些论点进行了评估,$ k = \ mathbb {q}(\ sqrt {-d})$,带有$ -D \ equiv 1 $(mod $ 8 $),其中理想$(2)= \ wp_2 \ wp_2 \ wp_2 \ wp_2'$是两种primpless a产品。这些值的$ v(τ)$的值显示出生成$ \ wp_2 $或$ \ wp_2'$的惯性字段,这是在$ k $上的扩展环类字段中的。证明了这些相同值的$ \ mathbb {q} $,以及$ 0,-1 \ pm \ sqrt {2} $,被证明形成了固定代数函数$ \ hat f(x)$的确切定期点的确切点集。这些是Rogers-Ramanujan的相似结果的类似物。

A continued fraction $v(τ)$ of Ramanujan is evaluated at certain arguments in the field $K = \mathbb{Q}(\sqrt{-d})$, with $-d \equiv 1$ (mod $8$), in which the ideal $(2) = \wp_2 \wp_2'$ is a product of two prime ideals. These values of $v(τ)$ are shown to generate the inertia field of $\wp_2$ or $\wp_2'$ in an extended ring class field over the field $K$. The conjugates over $\mathbb{Q}$ of these same values, together with $0, -1 \pm \sqrt{2}$, are shown to form the exact set of periodic points of a fixed algebraic function $\hat F(x)$, independent of $d$. These are analogues of similar results for the Rogers-Ramanujan continued fraction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源