论文标题
用人作为传感器的闭塞感知人群导航
Occlusion-Aware Crowd Navigation Using People as Sensors
论文作者
论文摘要
在拥挤的空间中的自主导航构成了移动机器人的挑战,这是由于具有高度动态的,可观察到的环境。由于传感器的视野有限和阻碍人类代理,在这种情况下,在这种情况下的闭合非常普遍。先前的工作表明,观察到的人类药物的互动行为可用于估计尽管有阻塞,但仍可用来估计潜在的障碍。我们建议将这种社会推理技术整合到计划管道中。我们使用具有特殊设计的损失函数的各种自动编码器来学习对遮挡推理有意义的表示。这项工作采用了一种深厚的增强学习方法,以纳入咬合感知计划的学说。在模拟中,我们的闭塞性政策通过估算遮挡空间中的代理来实现可比较的避免碰撞性能,以完全可观察到的导航。我们展示了从模拟到现实世界Turtlebot 2i的成功政策转移。据我们所知,这项工作是第一个使用社会阻塞推理进行人群导航的工作。
Autonomous navigation in crowded spaces poses a challenge for mobile robots due to the highly dynamic, partially observable environment. Occlusions are highly prevalent in such settings due to a limited sensor field of view and obstructing human agents. Previous work has shown that observed interactive behaviors of human agents can be used to estimate potential obstacles despite occlusions. We propose integrating such social inference techniques into the planning pipeline. We use a variational autoencoder with a specially designed loss function to learn representations that are meaningful for occlusion inference. This work adopts a deep reinforcement learning approach to incorporate the learned representation for occlusion-aware planning. In simulation, our occlusion-aware policy achieves comparable collision avoidance performance to fully observable navigation by estimating agents in occluded spaces. We demonstrate successful policy transfer from simulation to the real-world Turtlebot 2i. To the best of our knowledge, this work is the first to use social occlusion inference for crowd navigation.