论文标题

带有前缀的词典最不平方的单词

The lexicographically least square-free word with a given prefix

论文作者

Berera, Siddharth, Gómez-Colunga, Andrés, Lakerdas-Gayle, Joey, López, John, Matin, Mauditra, Roebuck, Daniel, Rowland, Eric, Scully, Noam, Whidden, Juliet

论文摘要

具有给定前缀$ p $的非阴性整数字母上的词典最不平方的无限单词表示为$ l(p)$。当$ p $是一个空的单词时,瓜伊·帕奎特(Guay-Paquet)显示了这个单词,而Shallit则是标尺序列。对于其他前缀,该结构明显复杂得多。在本文中,我们表明$ l(p)$反映了几个单词$ p $的标尺序列的结构。我们提供的形态为字母$ n = 1 $和$ n \ geq3 $而产生$ l(n)$,以及大多数两个字母单词$ p $的家庭的$ l(p)$。

The lexicographically least square-free infinite word on the alphabet of non-negative integers with a given prefix $p$ is denoted $L(p)$. When $p$ is the empty word, this word was shown by Guay-Paquet and Shallit to be the ruler sequence. For other prefixes, the structure is significantly more complicated. In this paper, we show that $L(p)$ reflects the structure of the ruler sequence for several words $p$. We provide morphisms that generate $L(n)$ for letters $n=1$ and $n\geq3$, and $L(p)$ for most families of two-letter words $p$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源