论文标题
某些指数系统的完整性和lacunary多项式的零
Completeness of Certain Exponential Systems and Zeros of Lacunary Polynomials
论文作者
论文摘要
令$γ$为$ \ {0,1,2,... \} $的子集。我们表明,如果$γ$具有“差距”,那么系统的完整性和框架属性$ \ {t^ke^{2πint}:n \ in \ mathbb {z},k \inγ\} $差异与经典指数系统的差异。这种现象与脱离多项式的某些唯一性集的存在密切相关。
Let $Γ$ be a subset of $\{0,1,2,...\}$. We show that if $Γ$ has `gaps' then the completeness and frame properties of the system $\{t^ke^{2πi nt}: n\in\mathbb{Z},k\inΓ\}$ differ from those of the classical exponential systems. This phenomenon is closely connected with the existence of certain uniqueness sets for lacunary polynomials.