论文标题

在多种多样学习全球平滑功能

Learning Globally Smooth Functions on Manifolds

论文作者

Cervino, Juan, Chamon, Luiz F. O., Haeffele, Benjamin D., Vidal, Rene, Ribeiro, Alejandro

论文摘要

平滑度和低维结构在改善学习和统计学中的概括和稳定性方面起着核心作用。这项工作结合了半无限限制的学习和多种正则化的技术,以学习在多种多样的全球平滑表示。为此,它表明,在典型条件下,学习Lipschitz在多种状态上的连续功能的问题等同于动态加权的歧管正则化问题。该观察结果导致了一种基于加权拉普拉斯的惩罚的实用算法,其权重通过随机梯度技术进行了调整。结果表明,在轻度条件下,该方法估计了溶液的Lipschitz常数,将全球光滑的溶液作为副产品学习。现实世界数据的实验说明了所提出的方法相对于现有替代方案的优势。

Smoothness and low dimensional structures play central roles in improving generalization and stability in learning and statistics. This work combines techniques from semi-infinite constrained learning and manifold regularization to learn representations that are globally smooth on a manifold. To do so, it shows that under typical conditions the problem of learning a Lipschitz continuous function on a manifold is equivalent to a dynamically weighted manifold regularization problem. This observation leads to a practical algorithm based on a weighted Laplacian penalty whose weights are adapted using stochastic gradient techniques. It is shown that under mild conditions, this method estimates the Lipschitz constant of the solution, learning a globally smooth solution as a byproduct. Experiments on real world data illustrate the advantages of the proposed method relative to existing alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源