论文标题

一些单身的Arthur数据包,用于还原$ p $ -ADIC群体

Some Unipotent Arthur Packets for Reductive $p$-adic Groups

论文作者

Ciubotaru, Dan, Mason-Brown, Lucas, Okada, Emile

论文摘要

令$ k $为$ p $ -ADIC字段,让$ \ Mathbf {g}(k)$为连接的还原组的$ k $点,内部到拆分。钢化L-packet组成部分的Aubert-Zelevinsky二重奏组成了$ \ Mathbf {g}(k)$的Arthur数据包。在本文中,我们根据波前集对这种亚瑟数据包进行了替代表征,在某些情况下证明了江-liu和shahidi的猜想。为了与真实和复杂的群体进行类比,我们定义了一些特殊的Arthur数据包,我们称之为\ emph {弱} Arthur数据包,并根据其Langlands参数来描述其成分。

Let $k$ be a $p$-adic field and let $\mathbf{G}(k)$ be the $k$-points of a connected reductive group, inner to split. The set of Aubert-Zelevinsky duals of the constituents of a tempered L-packet form an Arthur packet for $\mathbf{G}(k)$. In this paper, we give an alternative characterization of such Arthur packets in terms of the wavefront set, proving in some instances a conjecture of Jiang-Liu and Shahidi. Pursuing an analogy with real and complex groups, we define some special unions of Arthur packets which we call \emph{weak} Arthur packets and describe their constituents in terms of their Langlands parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源