论文标题

多公布,泊松均匀空间和多型列品种

Polyubles, Poisson homogeneous spaces and multi-flag varieties

论文作者

Deng, Shaoqiang, Kang, Chuangchuang, Yu, Shizhuo

论文摘要

Manin三重的多块可以被视为其'$ n $ th power',它在研究泊松几何,数学物理学和谎言理论的研究中起着重要的规则。在本文中,我们首先在$ mn $ ble和$ m $ uble的$ n $ uble之间构建同构,并指出它是唯一的。然后,我们根据第一个主要结果构建了一类泊松同质空间,并在它们之间获得一类泊松同构形态。最后,我们将前两个主要结果应用于多型型品种以及多双旗品种,并在它们之间以及它们的$ t $ leaeves之间构建一类全球泊松同构。

A polyuble of a Manin triple can be regarded as the ``$n$-th power'' of it, which plays an important rule in the study of Poisson geometry, mathematical physics and Lie theory. In this paper, we first construct an isomorphism between the $mn$-ble and the $n$-ubles of $m$-uble by colored graph and point out it is unique. Then, we construct a class of Poisson homogeneous spaces and obtain a class of Poisson homeomorphisms between them based on the first main result. Last, we apply first two main results to multi-flag varieties as well as multi-double flag varieties and construct a class of global Poisson isomorphisms between them as well as their $T$-leaves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源