论文标题
时间依赖性PDE的隐式神经空间表示
Implicit Neural Spatial Representations for Time-dependent PDEs
论文作者
论文摘要
隐式神经空间表示(INSR)已成为空间依赖矢量场的有效表示。这项工作探索了使用insr解决时间依赖的PDE。经典的PDE求解器引入时间和空间离散。常见的空间离散化包括网格和无网状点云,其中每个自由度对应于太空中的位置。尽管这些明确的空间对应关系对模型和理解是直观的,但这些表示不一定是准确性,记忆使用或适应性的最佳选择。保持经典的时间离散化不变(例如,显式/隐式欧拉),我们将INSR作为一种替代空间离散化探索,其中空间信息被隐式存储在神经网络权重中。然后,网络权重随时间集成而随着时间的流逝而发展。我们的方法不需要现有求解器生成的任何培训数据,因为我们的方法是求解器本身。我们通过涉及大弹性变形,湍流和多尺度现象的示例来验证各种PDE的方法。尽管计算比传统表示速度慢,但我们的方法表现出更高的准确性和较低的记忆消耗。尽管经典求解器只能通过诉诸复杂的重新算法来动态地调整其空间表示,但我们的INSR方法本质上是适应性的。通过利用经典时代集成商的丰富文献,例如操作员分解方案,我们的方法可以在以前的神经物理学接触障碍的情况下,在接触力学和动荡的流动中具有挑战性的模拟。视频和代码可在项目页面上找到:http://www.cs.columbia.edu/cg/insr-pde/
Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields. This work explores solving time-dependent PDEs with INSR. Classical PDE solvers introduce both temporal and spatial discretizations. Common spatial discretizations include meshes and meshless point clouds, where each degree-of-freedom corresponds to a location in space. While these explicit spatial correspondences are intuitive to model and understand, these representations are not necessarily optimal for accuracy, memory usage, or adaptivity. Keeping the classical temporal discretization unchanged (e.g., explicit/implicit Euler), we explore INSR as an alternative spatial discretization, where spatial information is implicitly stored in the neural network weights. The network weights then evolve over time via time integration. Our approach does not require any training data generated by existing solvers because our approach is the solver itself. We validate our approach on various PDEs with examples involving large elastic deformations, turbulent fluids, and multi-scale phenomena. While slower to compute than traditional representations, our approach exhibits higher accuracy and lower memory consumption. Whereas classical solvers can dynamically adapt their spatial representation only by resorting to complex remeshing algorithms, our INSR approach is intrinsically adaptive. By tapping into the rich literature of classic time integrators, e.g., operator-splitting schemes, our method enables challenging simulations in contact mechanics and turbulent flows where previous neural-physics approaches struggle. Videos and codes are available on the project page: http://www.cs.columbia.edu/cg/INSR-PDE/