论文标题
具有旋转区域的单元光盘的多机器人运动计划
Multi-Robot Motion Planning for Unit Discs with Revolving Areas
论文作者
论文摘要
我们研究了在多边形环境中收集$ n $标记的单元盘机器人的运动计划问题。我们假设机器人在其开始和最终位置周围具有旋转区域:每个启动和每个决赛都包含在radius $ 2 $的圆盘中,而不一定同心与开始或最终位置,这是没有其他开始或最终位置的。此假设允许弱孔酮运动计划,其中机器人根据订购的订购行动,如下所示:在订购中的机器人$ r $转弯期间,它从起步到最终位置都完全移动,而其他机器人则不会离开其旋转区域。随着$ r $通过旋转区域,该区域内部的机器人$ r'$可能会在旋转区域内移动以避免碰撞。尽管存在运动计划,但我们表明,在这种情况下,即使运动计划被限制为虚弱的单身酮,也可以最大程度地减少总距离,这是APX-HARD,排除了任何多项式时$(1+ε)$ - 近似值 - 近似算法。 在正面,我们介绍了用于计算可行弱孔酮运动计划的第一个恒定因子近似算法。机器人传播的总距离在最佳运动计划的$ O(1)$属于$(1)之内,这不必弱单调。我们的算法扩展到固定多边形环境的在线设置,但机器人的初始和最终位置以在线方式指定。最后,我们观察到,在编辑路径时,避免机器人机器人碰撞的整体成本的开销可能会明显变化,具体取决于我们选择的顺序。在这方面找到最佳订购是NP-HARD,我们提供了一个多项式时间$ O(\ log n \ log \ log \ log n)$ - 近似算法。
We study the problem of motion planning for a collection of $n$ labeled unit disc robots in a polygonal environment. We assume that the robots have revolving areas around their start and final positions: that each start and each final is contained in a radius $2$ disc lying in the free space, not necessarily concentric with the start or final position, which is free from other start or final positions. This assumption allows a weakly-monotone motion plan, in which robots move according to an ordering as follows: during the turn of a robot $R$ in the ordering, it moves fully from its start to final position, while other robots do not leave their revolving areas. As $R$ passes through a revolving area, a robot $R'$ that is inside this area may move within the revolving area to avoid a collision. Notwithstanding the existence of a motion plan, we show that minimizing the total traveled distance in this setting, specifically even when the motion plan is restricted to be weakly-monotone, is APX-hard, ruling out any polynomial-time $(1+ε)$-approximation algorithm. On the positive side, we present the first constant-factor approximation algorithm for computing a feasible weakly-monotone motion plan. The total distance traveled by the robots is within an $O(1)$ factor of that of the optimal motion plan, which need not be weakly monotone. Our algorithm extends to an online setting in which the polygonal environment is fixed but the initial and final positions of robots are specified in an online manner. Finally, we observe that the overhead in the overall cost that we add while editing the paths to avoid robot-robot collision can vary significantly depending on the ordering we chose. Finding the best ordering in this respect is known to be NP-hard, and we provide a polynomial time $O(\log n \log \log n)$-approximation algorithm for this problem.