论文标题

支持金纳米颗粒催化剂的表面重排和蒸发动力学

Surface Rearrangement and Evaporation Kinetics of Supported Gold Nanoparticle Catalysts

论文作者

Horwath, James P., Lehman-Chong, Colin, Vojvodic, Aleksandra, Stach, Eric A.

论文摘要

由受支持的金属纳米颗粒组成的异质催化剂通常从其大比例的未协调的表面位点获得非凡的催化活性,从而促进反应物分子的吸附。同时,这些高能表面构型是不稳定的,导致纳米颗粒的生长或降解,最终导致催化活性的丧失。催化纳米颗粒的表面形态对于催化活性,选择性和降解速率至关重要,但是,众所周知,恶劣的反应条件会导致表面结构发生变化。尽管如此,有限的研究仍集中在理解纳米颗粒表面与降解率或机制之间的联系。在这里,我们使用\ textIt {int intu}透射电子显微镜,动力学蒙特卡洛模拟和密度功能理论计算的组合来研究模型AU在一系列温度下支持催化剂系统,以建立表面结构和原子协调环境中的变化,从而导致变化的变化会导致变化的变化机制,从而导致了变色的机能。通过将直接观察动态形状变化和颗粒蒸发速率的直接观察的实验结果与计算技术的直接观察,这使您能够理解纳米颗粒演化的基本热力学和动力学,我们说明了一种两步的演化机制,其中一种两步的演化机制,其中通过低配体方面的启动以及随后的粒子表面进行了移动充足,从而使移动的充足体形成。通过了解温度在表面扩散和蒸发之间的竞争中的作用,我们能够展示单个原子运动如何导致粒子尺度的形态变化,并合理化为什么在几乎相同纳米颗粒系统中颗粒之间蒸发速率在粒子之间有所不同。

Heterogeneous catalysts consisting of supported metallic nanoparticles typically derive exceptional catalytic activity from their large proportion of under-coordinated surface sites which promote adsorption of reactant molecules. Simultaneously, these high energy surface configurations are unstable, leading to nanoparticle growth or degradation, and eventually a loss of catalytic activity. Surface morphology of catalytic nanoparticles is paramount to catalytic activity, selectivity, as well as degradation rates, however, it is well-known that harsh reaction conditions can cause the surface structure to change. Still, limited research has focused on understanding the link between nanoparticle surface facets and degradation rates or mechanisms. Here, we study a model Au supported catalyst system over a range of temperatures using a combination of \textit{in situ} Transmission Electron Microscopy, kinetic Monte Carlo simulations, and density functional theory calculations to establish an atomistic picture of how variations in surface structures and atomic coordination environments lead to shifting evolution mechanisms as a function of temperature. By combining experimental results, which yield direct observation of dynamic shape changes and particle evaporation rates, with computational techniques, which enable understanding the fundamental thermodynamics and kinetics of nanoparticle evolution, we illustrate a two-step evolution mechanism in which mobile adatoms form through desorption from low-coordination facets and subsequently evaporate off the particle surface. By understanding the role of temperature in the competition between surface diffusion and evaporation, we are able to show how individual atomic movements lead to particle-scale morphological changes, and rationalize why evaporation rates vary between particles in a system of nearly identical nanoparticles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源