论文标题
$ a $ type of type $ a $的恒定项:结构
The constant term algebra of type $A$: the Structure
论文作者
论文摘要
在本文中,我们发现了一个新的非公共代数。我们将此代数称为$ a $类型的常数术语代数,该代数由某些常数术语运算符生成。我们通过在某些森林方面建立明确的基础来表征该代数的结构性结果。当我们应用迭代的laurent系列的方法来研究Birkhoff Polytope的Ehrhart系列的贝克和皮克斯顿的残基计算时,就会出现这个代数。自1962年戴森恒定术语身份以来,这个代数似乎是恒定术语世界领域的第一个结构结果。
In this paper, we discover a new noncommutative algebra. We refer this algebra as the constant term algebra of type $A$, which is generated by certain constant term operators. We characterize a structural result of this algebra by establishing an explicit basis in terms of certain forests. This algebra arises when we apply the method of the iterated Laurent series to investigate Beck and Pixton's residue computation for the Ehrhart series of the Birkhoff polytope. This algebra seems to be the first structural result in the area of the constant term world since the discovery of the Dyson constant term identity in 1962.