论文标题
可学习的优化和正规化方法,用于大规模MIMO CSI反馈
A Learnable Optimization and Regularization Approach to Massive MIMO CSI Feedback
论文作者
论文摘要
通道状态信息(CSI)在实现大量多重输入多重输出(MIMO)系统的潜在益处中起着至关重要的作用。在频划分双工(FDD)大规模MIMO系统中,基站(BS)依赖用户的持续和准确的CSI反馈。但是,由于天线和用户在大量的MIMO系统中提供的供您使用,因此反馈开销可能会成为瓶颈。在本文中,我们提出了一种用于CSI反馈的模型驱动的深度学习方法,称为可学习优化和正则化算法(LORA)。在Lora中引入了一个可学习的正则化模块,而不是使用L1-norm作为正则化项,以自动适应CSI的特征。我们将常规的迭代阈值阈值算法(ISTA)展开到神经网络,并通过终端培训学习优化过程和正规化术语。我们表明,洛拉提高了CSI反馈准确性和速度。此外,提出了一种新颖的可学习量化方法和相应的培训方案,并且表明洛拉可以以不同的比率成功运作,从而在CSI反馈开销方面具有灵活性。各种现实的场景被认为可以通过数值模拟证明洛拉的有效性和鲁棒性。
Channel state information (CSI) plays a critical role in achieving the potential benefits of massive multiple input multiple output (MIMO) systems. In frequency division duplex (FDD) massive MIMO systems, the base station (BS) relies on sustained and accurate CSI feedback from the users. However, due to the large number of antennas and users being served in massive MIMO systems, feedback overhead can become a bottleneck. In this paper, we propose a model-driven deep learning method for CSI feedback, called learnable optimization and regularization algorithm (LORA). Instead of using l1-norm as the regularization term, a learnable regularization module is introduced in LORA to automatically adapt to the characteristics of CSI. We unfold the conventional iterative shrinkage-thresholding algorithm (ISTA) to a neural network and learn both the optimization process and regularization term by end-toend training. We show that LORA improves the CSI feedback accuracy and speed. Besides, a novel learnable quantization method and the corresponding training scheme are proposed, and it is shown that LORA can operate successfully at different bit rates, providing flexibility in terms of the CSI feedback overhead. Various realistic scenarios are considered to demonstrate the effectiveness and robustness of LORA through numerical simulations.