论文标题
海洋SAR图像检索的子术法分解指导的无监督学习
Guided Unsupervised Learning by Subaperture Decomposition for Ocean SAR Image Retrieval
论文作者
论文摘要
Spaceborne合成的孔径雷达(SAR)几乎可以在几乎所有天气条件下提供海面粗糙度的准确图像,这是许多地球物理应用的独特资产。考虑到卫星每天获得的大量数据,需要进行自动化的物理特征提取技术。即使受到监督的深度学习方法达到了最新的结果,它们也需要大量的标记数据,这些数据很困难且过于昂贵。为此,我们使用亚措施分解(SD)算法来增强海洋表面上无监督的学习检索,使海洋研究人员能够搜索大型海洋数据库。我们从经验上证明,对于无监督的变压器自动编码器网络,SD以超过20%的速度提高了检索精度。此外,我们表明,当使用多普勒质心图像用作输入数据时,SD会带来重要的性能提升,从而引导新的无监督物理学指导检索算法。
Spaceborne synthetic aperture radar (SAR) can provide accurate images of the ocean surface roughness day-or-night in nearly all weather conditions, being an unique asset for many geophysical applications. Considering the huge amount of data daily acquired by satellites, automated techniques for physical features extraction are needed. Even if supervised deep learning methods attain state-of-the-art results, they require great amount of labeled data, which are difficult and excessively expensive to acquire for ocean SAR imagery. To this end, we use the subaperture decomposition (SD) algorithm to enhance the unsupervised learning retrieval on the ocean surface, empowering ocean researchers to search into large ocean databases. We empirically prove that SD improve the retrieval precision with over 20% for an unsupervised transformer auto-encoder network. Moreover, we show that SD brings important performance boost when Doppler centroid images are used as input data, leading the way to new unsupervised physics guided retrieval algorithms.