论文标题

强化学习算法:概述和分类

Reinforcement Learning Algorithms: An Overview and Classification

论文作者

AlMahamid, Fadi, Grolinger, Katarina

论文摘要

使应用程序和机器更加聪明的愿望以及使其在没有人类互动的情况下进行操作的愿望一直在推动神经网络,深度学习和其他机器学习技术的创新。尽管强化学习主要用于视频游戏,但最新的进步以及多样化和强大的强大强化算法的发展使强化学习社区能够从玩视频游戏转向解决自动驾驶系统中的复杂现实生活问题,例如自动驾驶汽车,交付无人机和自动机器人。了解应用程序的环境和算法的局限性在选择适当的强化学习算法中起着至关重要的作用,这些学习算法成功地以有效的方式解决了该问题。因此,在这项研究中,我们确定了三种主要环境类型,并根据这些环境类型对增强学习算法进行分类。此外,在每个类别中,我们确定算法之间的关系。每种算法的概述提供了对算法基础的见解,并回顾了算法之间的相似性和差异。这项研究提供了有关该领域的视角,并帮助从业人员和研究人员为其用例选择适当的算法。

The desire to make applications and machines more intelligent and the aspiration to enable their operation without human interaction have been driving innovations in neural networks, deep learning, and other machine learning techniques. Although reinforcement learning has been primarily used in video games, recent advancements and the development of diverse and powerful reinforcement algorithms have enabled the reinforcement learning community to move from playing video games to solving complex real-life problems in autonomous systems such as self-driving cars, delivery drones, and automated robotics. Understanding the environment of an application and the algorithms' limitations plays a vital role in selecting the appropriate reinforcement learning algorithm that successfully solves the problem on hand in an efficient manner. Consequently, in this study, we identify three main environment types and classify reinforcement learning algorithms according to those environment types. Moreover, within each category, we identify relationships between algorithms. The overview of each algorithm provides insight into the algorithms' foundations and reviews similarities and differences among algorithms. This study provides a perspective on the field and helps practitioners and researchers to select the appropriate algorithm for their use case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源