论文标题

关于加权零和子序列的数量

On the Number of Weighted Zero-sum Subsequences

论文作者

Lemos, A., Moriya, B. K., Moura, A. O., Silva, A. T.

论文摘要

让$ g $为有限的添加剂ABELIAN集团,带有指数$ d^kn,d,n> 1,$ $ k $ a正整数。对于$ s $ a $ g $和$ a = \ {1,2,\ ldots,d^kn-1 \} \ setMinus \ {d^kn/d^i:i \ in [1,k] \},$,我们调查了数量$ n_ {a,0} $的$ n数字$,$ n数字$,特别是,我们证明$ n_ {a,0}(s)\ ge 2^{| s | -d_a(g)+1},其中$ d_a(g)$是$ a $ a $ a watered davenport常数。我们还表征了某些群体相等性的极端序列的结构。

Let $G$ be a finite additive abelian group with exponent $d^kn, d,n>1,$ and $k$ a positive integer. For $S$ a sequence over $G$ and $A=\{1,2,\ldots,d^kn-1\}\setminus\{d^kn/d^i:i\in[1,k]\}, $ we investigate the lower bound of the number $N_{A,0}(S)$, which denotes the number of $A$-weighted zero-sum subsequences of $S.$ In particular, we prove that $N_{A,0}(S)\ge 2^{|S|-D_A(G)+1},$ where $D_A(G)$ is the $A$-weighted Davenport Constant. We also characterize the structures of the extremal sequences for which equality holds for some groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源