论文标题
使用Monte Carlo辐射转运的3D辐射流体动力学模型的合成光谱
Synthesizing Spectra from 3D Radiation Hydrodynamic Models of Massive Stars Using Monte Carlo Radiation Transport
论文作者
论文摘要
观察结果表明,大多数巨大的恒星表面上存在湍流运动。从观察到的宽度现象开始,其宽度比热拓宽大得多(例如,微扰动性和大型扰动),到在过渡系外球星卫星卫星光度计中检测到随机低频可变性(SLFV),这些恒星显然在其表面上显然具有大规模的湍流运动。该湍流的原因是有争议的,近地面对流区,核心内部重力波和提出的风变异性。我们的3D灰色辐射流体动力学(RHD)模型表征了表面的对流动力学,该动力学是由近表面对流区域驱动的,并在最发光的大型恒星中为观察到的SLFV提供了合理的匹配。现在,我们探索了这些3D RHD模型的复杂发射表面,这些模型强烈违反了平面平行气氛的1D假设。通过使用蒙特卡洛辐射传输代码塞多纳(Sedona)进行后处理,我们合成了恒星光谱,并从单个光电线的扩展中提取信息。塞多纳的使用可以计算光谱吸收线轮廓的视角和时间依赖性。将不相关的时间快照结合在一起,我们比较了从3D RHD模型的速度场与扩展发射区域的热拓宽进行比较,这表明我们的合成光谱线与观察到的大量驱动式呈液体从相似的恒星中紧密相似。更普遍地,我们开发的新技术将允许对任何未来3D模拟的湍流速度拓宽起源进行系统的研究。
Observations indicate that turbulent motions are present on most massive star surfaces. Starting from the observed phenomena of spectral lines with widths much larger than thermal broadening (e.g. micro- and macroturbulence) to the detection of stochastic low-frequency variability (SLFV) in the Transiting Exoplanet Survey Satellite photometry, these stars clearly have large scale turbulent motions on their surfaces. The cause of this turbulence is debated, with near-surface convection zones, core internal gravity waves, and wind variability being proposed. Our 3D grey radiation hydrodynamic (RHD) models characterized the surfaces' convective dynamics driven by near-surface convection zones and provided a reasonable match to the observed SLFV in the most luminous massive stars. We now explore the complex emitting surfaces of these 3D RHD models, which strongly violate the 1D assumption of a plane parallel atmosphere. By post-processing the grey RHD models with the Monte Carlo radiation transport code SEDONA, we synthesize stellar spectra and extract information from the broadening of individual photospheric lines. The use of SEDONA enables the calculation of the viewing angle and temporal dependence of spectral absorption line profiles. Combining uncorrelated temporal snapshots together, we compare the broadening from the 3D RHD models' velocity fields to the thermal broadening of the extended emitting region, showing that our synthesized spectral lines closely resemble the observed macroturbulent broadening from similarly luminous stars. More generally, the new techniques we have developed will allow for systematic studies of the origin of turbulent velocity broadening from any future 3D simulations.