论文标题

迭代方法与噪声进行图像压缩:优化空间和音调数据

Iterative Approach to Image Compression with Noise : Optimizing Spatial and Tonal Data

论文作者

Belhachmi, Zakaria, Jacumin, Thomas

论文摘要

我们考虑了一些迭代方法,用于在图像中找到使用噪声压缩的最佳插值数据。插值数据由一组像素及其灰色/颜色值组成。迭代方法中的目的是允许在重建图像重建的介入过程中动态更改数据,该图像包括增强和降解效应。该方法的管理模型是一个完全抛物线的问题,其中一组存储的像素集取决于时间。我们考虑与模型相关的半污染动力学系统,该系统引起了一种迭代方法,在该方法中,在迭代期间修改了存储的数据以获得最佳结果。从$γ$ - convergence工具中的基于形状的分析(尤其是非常适合的拓扑渐近学和``脂肪像素''方法)中找到压缩集的方法是从形状优化理论中获得最佳集合的分析表征。我们执行分析并得出几种我们实施和比较的迭代算法,以获得最有效的压缩策略和噪音图像的介入。提出了一些数值计算以确认理论发现。最后,我们提出了一个修改的模型,该模型允许介绍数据随迭代而变化,并将所得的新方法与最先进的``概率''方法进行比较。

We consider some iterative methods for finding the best interpolation data in the images compression with noise. The interpolation data consists of the set of pixels and their grey/color values. The aim in the iterative approach is to allow the change of the data dynamically during the inpainting process for a reconstruction of the image that includes the enhancement and denoising effects. The governing PDE model of this approach is a fully parabolic problem where the set of stored pixels is time dependent. We consider the semi-discrete dynamical system associated to the model which gives rise to an iterative method where the stored data are modified during the iterations for best outcomes. Finding the compression sets follows from a shape-based analysis within the $Γ$-convergence tools, in particular well suited topological asymptotic and a ``fat pixels'' approach are considered to obtain an analytic characterization of the optimal sets in the sense of shape optimization theory. We perform the analysis and derive several iterative algorithms that we implement and compare to obtain the most efficient strategies of compression and inpainting for noisy images. Some numerical computations are presented to confirm the theoretical findings. Finally, we propose a modified model that allows the inpainting data to change with the iteration and compare the resulting new method to the ``probabilistic'' ones from the state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源