论文标题

纠正亚最佳位分配

Correcting the Sub-optimal Bit Allocation

论文作者

Xu, Tongda, Gao, Han, Wang, Yuanyuan, Qin, Hongwei, Wang, Yan, Liu, Jingjing, Zhang, Ya-Qin

论文摘要

在本文中,我们研究了神经视频压缩(NVC)中位分配的问题。首先,我们透露,最近一种声称是最佳的位分配方法实际上是由于其实施而是最佳的。具体而言,我们发现它的亚典型性在于半损坏的变异推理(SAVI)对潜在的,具有非分子变异后验。然后,我们表明,在非成分潜在的SAVI校正版本需要递归地通过梯度上升施加后传播,我们基于我们得出校正后的最佳位分配算法。由于校正位分配的计算不可行,我们设计了有效的近似值以使其实用。经验结果表明,我们提出的校正显着改善了R-D性能和比特率误差的错误分配,并且比所有其他位分配方法都大大提高了。源代码在补充材料中提供。

In this paper, we investigate the problem of bit allocation in Neural Video Compression (NVC). First, we reveal that a recent bit allocation approach claimed to be optimal is, in fact, sub-optimal due to its implementation. Specifically, we find that its sub-optimality lies in the improper application of semi-amortized variational inference (SAVI) on latent with non-factorized variational posterior. Then, we show that the corrected version of SAVI on non-factorized latent requires recursively applying back-propagating through gradient ascent, based on which we derive the corrected optimal bit allocation algorithm. Due to the computational in-feasibility of the corrected bit allocation, we design an efficient approximation to make it practical. Empirical results show that our proposed correction significantly improves the incorrect bit allocation in terms of R-D performance and bitrate error, and outperforms all other bit allocation methods by a large margin. The source code is provided in the supplementary material.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源