论文标题
张量网络的最小规范形式
The minimal canonical form of a tensor network
论文作者
论文摘要
张量网络在签约的虚拟自由度上具有衡量自由度。规范形式是解决这种自由度的选择。对于矩阵产品状态,选择规范形式是用于理论和数值目的的强大工具。另一方面,对于二维尺寸的张量网络,对量规对称性的理解只有有限的理解。在这里,我们介绍了一种新的规范形式,即最小规范形式,该形式适用于任何维度的预测纠缠对状态(PEP),并证明了相应的基本定理。对于矩阵产品而言,这已经提供了一种新的规范形式,而在较高维度上,它是对张量的任何选择有效的规范形式的第一个严格定义。我们表明,当且仅当它们是相当于限制的仪表时,两个张量具有相同的最小规范形式;此外,只有当它们给出任何几何形状的量子状态时,情况才是这种情况。特别是,这意味着后一个问题是可以决定的 - 与众所周知的网格上的不可证明性相反。我们还提供了严格的算法来计算最低规范形式。为了实现这一目标,我们借鉴了非交通性小组优化的几何不变理论和理论计算机科学的最新进展。
Tensor networks have a gauge degree of freedom on the virtual degrees of freedom that are contracted. A canonical form is a choice of fixing this degree of freedom. For matrix product states, choosing a canonical form is a powerful tool, both for theoretical and numerical purposes. On the other hand, for tensor networks in dimension two or greater there is only limited understanding of the gauge symmetry. Here we introduce a new canonical form, the minimal canonical form, which applies to projected entangled pair states (PEPS) in any dimension, and prove a corresponding fundamental theorem. Already for matrix product states this gives a new canonical form, while in higher dimensions it is the first rigorous definition of a canonical form valid for any choice of tensor. We show that two tensors have the same minimal canonical forms if and only if they are gauge equivalent up to taking limits; moreover, this is the case if and only if they give the same quantum state for any geometry. In particular, this implies that the latter problem is decidable - in contrast to the well-known undecidability for PEPS on grids. We also provide rigorous algorithms for computing minimal canonical forms. To achieve this we draw on geometric invariant theory and recent progress in theoretical computer science in non-commutative group optimization.