论文标题

使用量子传感器传感自由基反应中的磁场效应

Sensing of magnetic field effects in radical-pair reactions using a quantum sensor

论文作者

Khurana, Deepak, Jensen, Rasmus H., Giri, Rakshyakar, Bocquel, Juanita, Andersen, Ulrik L., Berg-Sørensen, Kirstine, Huck, Alexander

论文摘要

在过去的五十年中,某些化学反应中的磁场效应(MFE)已得到很好的确定,归因于瞬时激进对的演变,其自旋动力学由局部和外部磁场确定。用于探测这些反应的大多数现有实验技术仅提供合成的平均反应参数和自旋化学,从而阻碍了单分子尺度上量子相干现象的潜在存在的观察。在这里,将单个氮空位(NV)中心作为量子传感器,我们研究了在分子的单个和小集合的尺度上检测MFE的前景和要求。我们采用了详尽而逼真的激进对模型,考虑到它与局部自旋环境和传感器的耦合。对于两个模型系统,即使在自由基对和NV量子传感器之间的弱耦合方案中,我们也会得出MFE的信号,并观察到某些种群的动力学以及一致性元素的动力学,也可以直接检测到自由基对的密度矩阵。我们的研究将提供重要的指南,以在单分子量表上潜在地检测生物分子的自旋化学,以见证量子相干性在生物过程中的假设重要性。

Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades and are attributed to the evolution of transient radical-pairs whose spin dynamics are determined by local and external magnetic fields. The majority of existing experimental techniques used to probe these reactions only provide ensemble averaged reaction parameters and spin chemistry, hindering the observation of the potential presence of quantum coherent phenomena at the single molecule scale. Here, considering a single nitrogen vacancy (NV) centre as quantum sensor, we investigate the prospects and requirements for detection of MFEs on the spin dynamics of radical-pairs at the scale of single and small ensemble of molecules. We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor. For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor, and observe that the dynamics of certain populations, as well as coherence elements, of the density matrix of the radical pair are directly detectable. Our investigations will provide important guidelines for potential detection of spin chemistry of bio-molecules at the single molecule scale, required to witness the hypothesised importance of quantum coherence in biological processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源