论文标题
在一类福利sasakiEinstein歧管的临界体积上的上限
An Upper Bound on the Critical Volume in a Class of Toric Sasaki-Einstein Manifolds
论文作者
论文摘要
我们证明,相对于相应的calabi-yau品种中Gorenstein奇异性分辨率的第一类Chern类别,在大量曲折的Sasaki Einstein歧管的临界体积上存在上限。我们检查了通过Delzant构造获得的这些品种获得的规范指标,并在达到界限时表征了案例。我们评论调查中使用的计算工具,特别是神经网络和梯度显着方法。
We prove the existence of an upper bound on critical volume of a large class of toric Sasaki-Einstein manifolds with respect to the first Chern class of the resolutions of the Gorenstein singularities in the corresponding toric Calabi-Yau varieties. We examine the canonical metrics obtained by the Delzant construction on these varieties and characterise cases when the bound is attained. We comment on computational tools used in the investigation, in particular Neural Networks and the gradient saliency method.