论文标题
部分可观测时空混沌系统的无模型预测
ArNLI: Arabic Natural Language Inference for Entailment and Contradiction Detection
论文作者
论文摘要
自然语言推论(NLI)是自然语言处理中的热门话题研究,句子之间的矛盾检测是NLI的特殊情况。这被认为是一项困难的NLP任务,当在许多NLP应用程序中添加为组件时,它具有很大的影响,例如问答系统,文本摘要。阿拉伯语是由于其丰富的词汇,语义歧义而检测矛盾的最具挑战性的低资源语言之一。我们创建了一个超过12K句子的数据集并命名为Arnli,这将是公开可用的。此外,我们采用了一种新的模型,该模型受到斯坦福大学矛盾检测的启发,提出了有关英语的解决方案。我们提出了一种方法,以使用矛盾向量与语言模型向量相结合,以检测以阿拉伯语对句子之间的矛盾,作为机器学习模型的输入。我们分析了不同传统的机器学习分类器的结果,并在我们创建的数据集(Arnli)和Pheme,病态的英语数据集的自动翻译上进行了比较。使用随机森林分类器获得的最佳效果,精度为99%,60%,生病和Arnli的最佳效果。
Natural Language Inference (NLI) is a hot topic research in natural language processing, contradiction detection between sentences is a special case of NLI. This is considered a difficult NLP task which has a big influence when added as a component in many NLP applications, such as Question Answering Systems, text Summarization. Arabic Language is one of the most challenging low-resources languages in detecting contradictions due to its rich lexical, semantics ambiguity. We have created a data set of more than 12k sentences and named ArNLI, that will be publicly available. Moreover, we have applied a new model inspired by Stanford contradiction detection proposed solutions on English language. We proposed an approach to detect contradictions between pairs of sentences in Arabic language using contradiction vector combined with language model vector as an input to machine learning model. We analyzed results of different traditional machine learning classifiers and compared their results on our created data set (ArNLI) and on an automatic translation of both PHEME, SICK English data sets. Best results achieved using Random Forest classifier with an accuracy of 99%, 60%, 75% on PHEME, SICK and ArNLI respectively.