论文标题

通过预测控制转移信息来减轻机场的地面交通拥堵

Mitigating Landside Congestion at Airports through Predictive Control of Diversionary Messages

论文作者

Nazir, Nawaf, Vasisht, Soumya, Choudhury, Shushman, Zoepf, Stephen, Dowling, Chase P.

论文摘要

我们提出了一个数据驱动的控制框架,用于自适应管理机场的地面拥塞。地面交通显着影响机场运营以及关键效率,环境和安全指标。我们的框架模型在西雅图 - 塔科马国际机场(SEA)中部署了现实世界中的交通干预措施,数字签名板建议驾驶员根据当前的拥塞将驾驶员转移到出发或到达。我们使用测量的车辆流量/速度和乘客数量数据以及转移消息的时间标记记录来构建宏观系统动力学模型。然后,我们设计了一个模型预测控制器,该控制器使用我们的估计动力学来推荐为整体拥塞优化的转移。最后,我们评估了我们在海上50个现实世界历史场景上的方法,尽管充血,但尽管没有转移。我们的结果表明,我们的框架将在拥挤的道路中提高速度长达3次,并在每小时部署时节省了20至80个车时的累积旅行时间。总体而言,我们的工作强调了算法决策的机会,以增加操作员的判断和直觉,并产生更好的现实成果。

We present a data-driven control framework for adaptively managing landside congestion at airports. Ground traffic significantly impacts airport operations and critical efficiency, environmental, and safety metrics. Our framework models a real-world traffic intervention currently deployed at Seattle-Tacoma International Airport (SEA), where a digital signboard recommends drivers to divert to Departures or Arrivals depending on current congestion. We use measured vehicle flow/speed and passenger volume data, as well as time-stamped records of diversionary messages, to build a macroscopic system dynamics model. We then design a model predictive controller that uses our estimated dynamics to recommend diversions that optimize for overall congestion. Finally, we evaluate our approach on 50 real-world historical scenarios at SEA where no diversions were deployed despite significant congestion. Our results suggest that our framework would have improved speed in the congested roadway by up to three times and saved between 20 and 80 vehicle-hours of cumulative travel time in every hour of deployment. Overall, our work emphasizes the opportunity of algorithmic decision-making to augment operator judgment and intuition and yield better real-world outcomes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源