论文标题

抗三角块操作员矩阵的G-德拉津逆逆

The g-Drazin inverses of anti-triangular block operator matrices

论文作者

Chen, Huanyin, Sheibani, Marjan

论文摘要

如果存在$ b \,则banach代数$ \ mathcal {a} $在\ mathcal {a} $中存在$ b \ ab = ba = ba = b = bab = $和$ a-a-a^2b \ in \ Mathcal {a}^{qnil} $。在本文中,我们发现块操作员矩阵$ \ left的G-Drazin倒数的新明确表示( \ begin {array} {cc} E&I F&0 \ end {array} \ right)$。因此,我们解决了坎贝尔[S.L.坎贝尔,Drazin逆和二阶线性微分方程的系统,线性$ \&$多连线代数,14(1983),195---198]。

An element $a$ in a Banach algebra $\mathcal{A}$ has g-Drazin inverse if there exists $b\in \mathcal{A}$ such that $ab=ba, b=bab$ and $a-a^2b \in \mathcal{A}^{qnil}$. In this paper we find new explicit representations of the g-Drazin inverse of the block operator matrix $\left( \begin{array}{cc} E&I F&0 \end{array} \right)$. We thereby solve a wider kind of singular differential equations posed by Campbell [S.L. Campbell, The Drazin inverse and systems of second order linear differential equations, Linear $\&$ Multilinear Algebra, 14(1983), 195--198].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源