论文标题
部分可观测时空混沌系统的无模型预测
Embarrassingly Easy Document-Level MT Metrics: How to Convert Any Pretrained Metric Into a Document-Level Metric
论文作者
论文摘要
我们假设现有的句子级机器翻译(MT)指标在人类参考包含歧义时会效率降低。为了验证这一假设,我们提出了一种非常简单的方法,用于扩展验证的指标以在文档级别合并上下文。我们将我们的方法应用于三个流行的指标,即Bertscore,Prism和Comet,以及无参考的公制Comet-QE。我们使用提供的MQM注释评估了WMT 2021指标共享任务的扩展指标。我们的结果表明,扩展指标在大约85%的测试条件下优于其句子级别的级别,而在低质量的人类参考文献上排除了结果。此外,我们表明,我们的文档级扩展大大提高了其在话语现象任务上的准确性,表现优于专用基线高达6.1%。我们的实验结果支持我们的初始假设,并表明对指标的简单扩展使他们能够利用上下文来解决参考中的歧义。
We hypothesize that existing sentence-level machine translation (MT) metrics become less effective when the human reference contains ambiguities. To verify this hypothesis, we present a very simple method for extending pretrained metrics to incorporate context at the document level. We apply our method to three popular metrics, BERTScore, Prism, and COMET, and to the reference free metric COMET-QE. We evaluate the extended metrics on the WMT 2021 metrics shared task using the provided MQM annotations. Our results show that the extended metrics outperform their sentence-level counterparts in about 85% of the tested conditions, when excluding results on low-quality human references. Additionally, we show that our document-level extension of COMET-QE dramatically improves its accuracy on discourse phenomena tasks, outperforming a dedicated baseline by up to 6.1%. Our experimental results support our initial hypothesis and show that a simple extension of the metrics permits them to take advantage of context to resolve ambiguities in the reference.