论文标题

半盲源分离有学习的约束

Semi-Blind Source Separation with Learned Constraints

论文作者

Gertosio, Rémi Carloni, Bobin, Jérôme, Acero, Fabio

论文摘要

盲源分离(BSS)算法是无监督的方法,这是高光谱数据分析的基石,它通过允许物理有意义的数据分解。 BSS问题不足,该分辨率需要有效的正则化方案,以更好地区分来源并产生可解释的解决方案。为此,我们研究了一种半监督的源分离方法,在这种方法中,我们将预测的交替最小二乘算法与基于学习的正则化方案结合在一起。在本文中,我们专注于通过使用生成模型来限制混合矩阵属于学习的歧管。总而言之,我们表明,这允许具有提高精度的创新BSS算法,从而提供了可解释的解决方案。在涉及强噪声,高度相关的光谱和不平衡来源的挑战性场景中,对现实的高光谱天体物理数据进行了测试,对拟议的SGMCA提出的方法进行了测试。结果突出了在减少来源之间的泄漏之前,学到的重大好处,这使得总体上可以更好地分解。

Blind source separation (BSS) algorithms are unsupervised methods, which are the cornerstone of hyperspectral data analysis by allowing for physically meaningful data decompositions. BSS problems being ill-posed, the resolution requires efficient regularization schemes to better distinguish between the sources and yield interpretable solutions. For that purpose, we investigate a semi-supervised source separation approach in which we combine a projected alternating least-square algorithm with a learning-based regularization scheme. In this article, we focus on constraining the mixing matrix to belong to a learned manifold by making use of generative models. Altogether, we show that this allows for an innovative BSS algorithm, with improved accuracy, which provides physically interpretable solutions. The proposed method, coined sGMCA, is tested on realistic hyperspectral astrophysical data in challenging scenarios involving strong noise, highly correlated spectra and unbalanced sources. The results highlight the significant benefit of the learned prior to reduce the leakages between the sources, which allows an overall better disentanglement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源