论文标题

在拓扑数据分析中分析量子优势的前景

Analyzing Prospects for Quantum Advantage in Topological Data Analysis

论文作者

Berry, Dominic W., Su, Yuan, Gyurik, Casper, King, Robbie, Basso, Joao, Barba, Alexander Del Toro, Rajput, Abhishek, Wiebe, Nathan, Dunjko, Vedran, Babbush, Ryan

论文摘要

劳埃德等。首先证明了量子算法用于计算Betti数字的希望,这是表征数据集拓扑特征的一种方法。在这里,我们提出,分析和优化改进的量子数据分析(TDA)的量子算法的改进,包括缩放量的降低,包括一种基于不平等测试,使用KAISER窗口更有效的振幅估计算法来制备DICKE状态的方法,并基于Chaiser projectors ovelybyprojectors ovelybybyshev polynomials polynomials optimals。我们将方法编译为容忍故障的门集,并估计Toffoli复杂性中的常数因子。我们的分析表明,在靶向乘法误差近似时,仅在此问题上才有可能出现超季节量子加速,而Betti数字逐渐增长。此外,我们提出了量子TDA算法的取消化,该算法表明,具有指数较大的尺寸和贝蒂数是必要的,但条件不足,以获得超多种状态优势。然后,我们介绍和分析特定的问题示例,这些示例具有在超级多项式优势的制度中具有参数,并认为具有数万十亿个Toffoli大门的量子电路可以解决看似经典的实例。

Lloyd et al. were first to demonstrate the promise of quantum algorithms for computing Betti numbers, a way to characterize topological features of data sets. Here, we propose, analyze, and optimize an improved quantum algorithm for topological data analysis (TDA) with reduced scaling, including a method for preparing Dicke states based on inequality testing, a more efficient amplitude estimation algorithm using Kaiser windows, and an optimal implementation of eigenvalue projectors based on Chebyshev polynomials. We compile our approach to a fault-tolerant gate set and estimate constant factors in the Toffoli complexity. Our analysis reveals that super-quadratic quantum speedups are only possible for this problem when targeting a multiplicative error approximation and the Betti number grows asymptotically. Further, we propose a dequantization of the quantum TDA algorithm that shows that having exponentially large dimension and Betti number are necessary, but insufficient conditions, for super-polynomial advantage. We then introduce and analyze specific problem examples which have parameters in the regime where super-polynomial advantages may be achieved, and argue that quantum circuits with tens of billions of Toffoli gates can solve seemingly classically intractable instances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源