论文标题
在拓扑数据分析中分析量子优势的前景
Analyzing Prospects for Quantum Advantage in Topological Data Analysis
论文作者
论文摘要
劳埃德等。首先证明了量子算法用于计算Betti数字的希望,这是表征数据集拓扑特征的一种方法。在这里,我们提出,分析和优化改进的量子数据分析(TDA)的量子算法的改进,包括缩放量的降低,包括一种基于不平等测试,使用KAISER窗口更有效的振幅估计算法来制备DICKE状态的方法,并基于Chaiser projectors ovelybyprojectors ovelybybyshev polynomials polynomials optimals。我们将方法编译为容忍故障的门集,并估计Toffoli复杂性中的常数因子。我们的分析表明,在靶向乘法误差近似时,仅在此问题上才有可能出现超季节量子加速,而Betti数字逐渐增长。此外,我们提出了量子TDA算法的取消化,该算法表明,具有指数较大的尺寸和贝蒂数是必要的,但条件不足,以获得超多种状态优势。然后,我们介绍和分析特定的问题示例,这些示例具有在超级多项式优势的制度中具有参数,并认为具有数万十亿个Toffoli大门的量子电路可以解决看似经典的实例。
Lloyd et al. were first to demonstrate the promise of quantum algorithms for computing Betti numbers, a way to characterize topological features of data sets. Here, we propose, analyze, and optimize an improved quantum algorithm for topological data analysis (TDA) with reduced scaling, including a method for preparing Dicke states based on inequality testing, a more efficient amplitude estimation algorithm using Kaiser windows, and an optimal implementation of eigenvalue projectors based on Chebyshev polynomials. We compile our approach to a fault-tolerant gate set and estimate constant factors in the Toffoli complexity. Our analysis reveals that super-quadratic quantum speedups are only possible for this problem when targeting a multiplicative error approximation and the Betti number grows asymptotically. Further, we propose a dequantization of the quantum TDA algorithm that shows that having exponentially large dimension and Betti number are necessary, but insufficient conditions, for super-polynomial advantage. We then introduce and analyze specific problem examples which have parameters in the regime where super-polynomial advantages may be achieved, and argue that quantum circuits with tens of billions of Toffoli gates can solve seemingly classically intractable instances.