论文标题
VDDB:抗病毒药物发现的综合资源和机器学习平台
VDDB: a comprehensive resource and machine learning platform for antiviral drug discovery
论文作者
论文摘要
病毒感染是严重威胁人类健康的主要疾病之一。为了满足对采矿和共享与抗病毒药物相关的数据资源的需求不断增长,并加速了新的抗病毒药物的设计和发现,我们提出了一个开放式访问的抗病毒药物资源和机器学习平台(VDDB),据我们所知,这是基于实验性验证的潜在药物的全面资源,它是基于实验性药物的全面资源。目前,VDDB突出显示了848种临床疫苗,199种临床抗体,以及710,000多个针对39种医学重要病毒在内的小分子,包括SARS-COV-2。此外,VDDB为这些收集的潜在抗病毒药物/分子的药理学数据记录了约300万条记录,其中涉及314个基于细胞感染的表型和234个基于目标的基因型测定。基于这些注释的药理学数据,VDDB允许用户浏览,搜索和下载有关这些收集的可靠信息,以获取各种感兴趣的病毒。特别是,VDDB还整合了57个细胞感染和117个基于目标的相关高精确机器学习模型,以支持各种抗病毒药识别与鉴定有关的任务,例如复合活动预测,虚拟筛查,药物重新定位和目标捕捞。 VDDB可以在http://vddb.idruglab.cn上自由访问。
Virus infection is one of the major diseases that seriously threaten human health. To meet the growing demand for mining and sharing data resources related to antiviral drugs and to accelerate the design and discovery of new antiviral drugs, we presented an open-access antiviral drug resource and machine learning platform (VDDB), which, to the best of our knowledge, is the first comprehensive dedicated resource for experimentally verified potential drugs/molecules based on manually curated data. Currently, VDDB highlights 848 clinical vaccines, 199 clinical antibodies, as well as over 710,000 small molecules targeting 39 medically important viruses including SARS-CoV-2. Furthermore, VDDB stores approximately 3 million records of pharmacological data for these collected potential antiviral drugs/molecules, involving 314 cell infection-based phenotypic and 234 target-based genotypic assays. Based on these annotated pharmacological data, VDDB allows users to browse, search and download reliable information about these collects for various viruses of interest. In particular, VDDB also integrates 57 cell infection- and 117 target-based associated high-accuracy machine learning models to support various antivirals identification-related tasks, such as compound activity prediction, virtual screening, drug repositioning and target fishing. VDDB is freely accessible at http://vddb.idruglab.cn.