论文标题
具有全球意图本地化和本地运动改进的运动变压器
Motion Transformer with Global Intention Localization and Local Movement Refinement
论文作者
论文摘要
预测交通参与者的多模式未来行为对于机器人车辆做出安全决定至关重要。现有作品探索以直接根据潜在特征预测未来的轨迹,或利用密集的目标候选者来识别代理商的目的地,在这种策略中,由于所有运动模式均来自相同的功能,而后者的策略却具有效率问题,因此前者策略的收敛缓慢,因为其性能高度依赖于目标候选者的密度。在本文中,我们提出了运动变压器(MTR)框架,将运动预测模拟为全球意图定位和局部运动改进的关节优化。 MTR不使用目标候选者,而是通过采用一系列可学习的运动查询对来结合空间意图。每个运动查询对负责特定运动模式的轨迹预测和完善,这可以稳定训练过程并促进更好的多模式预测。实验表明,MTR在边际和联合运动预测挑战上都取得了最新的性能,在Waymo Open Motion DataSet的排行榜上排名第一。源代码可在https://github.com/sshaoshuai/mtr上找到。
Predicting multimodal future behavior of traffic participants is essential for robotic vehicles to make safe decisions. Existing works explore to directly predict future trajectories based on latent features or utilize dense goal candidates to identify agent's destinations, where the former strategy converges slowly since all motion modes are derived from the same feature while the latter strategy has efficiency issue since its performance highly relies on the density of goal candidates. In this paper, we propose Motion TRansformer (MTR) framework that models motion prediction as the joint optimization of global intention localization and local movement refinement. Instead of using goal candidates, MTR incorporates spatial intention priors by adopting a small set of learnable motion query pairs. Each motion query pair takes charge of trajectory prediction and refinement for a specific motion mode, which stabilizes the training process and facilitates better multimodal predictions. Experiments show that MTR achieves state-of-the-art performance on both the marginal and joint motion prediction challenges, ranking 1st on the leaderboards of Waymo Open Motion Dataset. The source code is available at https://github.com/sshaoshuai/MTR.