论文标题

多项式意识到椭圆曲线的Galois表示图像

Polynomials realizing images of Galois representations of an elliptic curve

论文作者

Yvon, Zoé

论文摘要

逆加洛伊斯问题的目的是找到一个给定场的扩展,其galois组与给定组是同构的。在本文中,我们对n是整数的GL(2,z/nz)的子组感兴趣。我们知道,通常使用椭圆曲线上的扭转点,我们可以将这些组作为给定数字场的Galois组。具体而言,Reverter和Vila(2000)的定理给出了每个原始n的多项式,具体取决于椭圆曲线,其Galois组为GL(2,Z/nz)。在本文中,我们将该定理概括为多个方向,尤其是n non必然质量的。我们还确定了最低量的估值在我们的结构中产生的多项式系数,仅取决于n。

The aim of the inverse Galois problem is to find extensions of a given field whose Galois group is isomorphic to a given group. In this article, we are interested in subgroups of GL(2,Z/nZ) where n is an integer. We know that, in general, we can realize these groups as the Galois group of a given number field, using the torsion points on an elliptic curve. Specifically, a theorem of Reverter and Vila (2000) gives, for each prime n, a polynomial, depending on an elliptic curve, whose Galois group is GL(2,Z/nZ). In this article, we generalize this theorem in several directions, in particular for n non necessarily prime. We also determine a minimum for the valuations of the coefficients of the polynomials arising in our construction, depending only on n.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源