论文标题
在二和三方面,从固定角度散射数据中恢复了固定角度散射数据
Recovery of singularities from fixed angle scattering data for biharmonic operator in dimensions two and three
论文作者
论文摘要
操作员$δ^2 u + v(x,| u |)u $的反固定角度问题在尺寸中$ n = 2,3 $。我们证明,在某些sobolev量表中,反向固定角度诞生近似与函数$ v(\ cdot,1)$之间的差异更光滑。这使我们能够得出结论,可以从散射幅度以某些固定的入射角从散射幅度的知识中重建扰动$ V $的主要奇异性。
The inverse fixed angle problem for operator $Δ^2 u + V(x,|u|) u$ is considered in dimensions $n=2,3$. We prove that the difference between an inverse fixed angle Born approximation and the function $V(\cdot,1)$ is smoother than the function $V$ itself in some Sobolev scale. This allows us to conclude that the main singularities of the perturbation $V$ can be reconstructed from the knowledge of the scattering amplitude with some fixed incident angle.